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We analyze various processes where particles are added irreversibly and sequen- 
tially at the sites of infinite ladders or broader strips (i.e., on terraces) of adsorp- 
tion sites. For "sufficiently narrow" strips or ladders, exact solution in closed 
form is possible for a variety of processes. Often this is most naturally achieved 
by mapping the process onto an equivalent one-dimensional process typically 
involving competitive adsorption. We demonstrate this procedure for sequential 
adsorption with nearest-neighbor exclusion on a 2 x oo square ladder. For other 
select processes on strips "slightly too broad" for exact solution, "almost exact" 
analysis is possible exploiting an empty-site shielding property. In this way, we 
determine a jamming coverage of 0.91556671 for random sequential adsorption 
of dimers on a 2 x ~ square ladder. For  "broader" strips, we note that the 
complexity of these problems quickly approaches that for oo x ov lattices. 

KEY WORDS: Random and cooperative sequential adsorption; jamming 
coverage; ladders; strips; shielding. 

1. I N T R O D U C T I O N  

Currently, there is considerable interest in random sequential adsorption 
(RSA) processes on lattices. (1~) Here particles are added irreversibly and 
sequentially at randomly chosen empty sites (or ensembles of empty sites 
for RSA of animals). More generally, one might consider a richer class of 
cooperative sequential adsorption (CSA) processes, where adsorption rates 
depend on the local environment. (2-~) Exact solution in closed form is 
possible for a broad class of RSA and CSA processes on one-dimensional 
(1D) lattices, (5) and on branching media, (6) by virtue of a shielding 
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property of suitable walls of empty sites34~ Interest in such 1D processes 
was motivated by application to the analysis of kinetics of reactions on 
polymer chains.(2' 3) 

Exact solution is not possible for sequential adsorption processes on 
2D lattices, although an empty-site shielding property persists34) This is 
unfortunate, since these 2D processes also have important application to 
the study of kinetics and adlayer structure in chemisorption systems (in the 
simplest case, at low temperatures where adatom mobility is negligible). 
Roberts (7) was first to consider random dimer filling of adjacent pairs of 
empty sites as a model for adsorption of diatomics on single-crystal sur- 
faces. Other examples of interest here are: (i) H 2 0  adsorption on Fe(001) 
modeled as random monomer filling on a square lattice with nearest 
neighbor (NN) exclusion, (8) i.e., single sites are filled randomly with the 
constraint that no NN pairs of filled sites can be formed; (ii) 02  adsorption 
on Pt(100) modeled as random dimer filling on diagonal or next-NN sites 
of a square lattice with NN exclusion. (9) 

Interest in 2D chemisorption systems provides some motivation to 
consider sequential adsorption processes on infinite strips of finite width. 
The hope is that one might obtain some insight into the behavior of "full" 
2D systems, while exploiting some of the features which allow exact solu- 
tion in 1D. Indeed this program has been initiated by Fan and Percus ~176 
and Baram and Kutasov, (n) who independently considered random 
monomer filling with NN exclusion on a 2 x oe square ladder. Exact 
solution was obtained here by combinatorial analysis, (m) by development 
of a closed set of rate equations, ~176 and by formal expansion, m) 

Our objective here is to provide a concise overview of RSA (and CSA) 
on n x oe strips with emphasis on the issue of solvability. In Section 2, we 
note that solution in closed form is possible for a variety of processes on 
"sufficiently narrow" strips. We show that often the most direct and natural 
method of analysis is to map the process onto an exactly solvable 1D 
process, typically involving competitive adsorption. This is the case, e.g., for 
the process considered by Fan and Percus. ~176 Next, in Section 3, we note 
that for some select processes on strips "slightly too broad" for closed-form 
solution, analysis is readily achieved to arbitrary degree of accuracy. The 
basic strategy here is exploitation of the empty-site shielding property to 
greatly simplify the associated hierarchical rate equations. We thus obtain 
for the first time "almost exact solutions" to nontrivial truly 2D RSA 
processes. This procedure is demonstrated in detail for random dimer filling 
on a 2 x oe square ladder. Finally, we describe the situation for broader 
strips, and draw some general conclusions, in Section 4. 
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2. EXACTLY SOLVABLE PROCESSES 

2.1. Cooperat ive Sequent ia l  Adsorpt ion w i th  NN Exclusion on 
a 2 x  oo Square Ladder 

As noted above, Fan and Percus (1~ considered RSA with NN exclu- 
sion on a 2 x oo square ladder, choosing free boundary conditions on both 
infinite edges. In the context of chemisorption, the assumption of random 
adsorption is an idealization. (12~ For  this reason, and for general theoretical 
interest, we are thus motivated to consider a natural cooperative general- 
ization of this problem. Specifically, we assume that adsorption with NN 
exclusion occurs with rates 1, ~, and/~ for sites on a square ladder having 
zero, one, and two occupied next-NN sites, respectively (see Fig. 1). It 
is interesting to note here that the saturation or jamming coverage Os is 
independent of/3 > 0. This is because sites with two occupied next-NNs do 
not influence adsorption elsewhere, and must eventually fill if/~ > 0. The 
analogous feature has been exploited for a linear lattice. (13~ We analyze this 
problem exactly in two ways. 

In the first approach, we map this problem onto one of competitive 
cooperative adsorption on a linear lattice with sites corresponding to 
rungs on the ladder (see Fig. 2). The lattice sites are initially empty (0). 
Two species (1 and 2) compete for adsorption on the linear lattice corre- 
sponding to adsorption on different sides of the ladder. No 11 or 22 NN 
pairs can be formed. The adsorption rate for each species is 1, ~, or /?  for 
sites with zero, one, or two NN sites occupied by the other species. 

This problem is clearly a special case of the general process of com- 
petitive adsorption with NN cooperativity. (14) Here one denotes empty sites 
by 0, and considers competitive adsorption, 0 ~ i, of species i =  1, 2,..., N. 
Adsorption rates rj, k(i) depend on th~ states j and k of the NN sites 
relative to that being filled (where O<~j,k<~N). For convenience, we 
assume reflection invariance of rates, and set Tj, k = Z i =  1,N Zj, k(i). One can 
determine the coverage, pair correlations, cluster size distributions, etc., 
exactly as functions of time t. Here we focus on the determination of the 

fP 
1 

w 

Fig. 1. Adsorption with NN exclusion at the sites of a 2 • o9 ladder with rates 1, ~, and fl 
for empty sites with zero, one, and two occupied next-NN sites, respectively. 



154 Evans and Nord 

( a )  ~ ~ - ~  I ? . . .[~ 
( b )  ~ ~ ~ o ~ ~ ~ ~ o ~ ~ o o 

I t I L ~ I I _ .  ~ I [ I 1 _ ~  

( c )  x x x 0 x , , ~ 0 ~ ~ 0 0 
I I I I I I I I L ! I L I 

Fig. 2. (a) Sequential adsorption with NN exclusion on a 2 x oo ladder, (b) mapped onto 
competitive adsorption on a linear lattice, and (c) related to single-species adsorption on a 
linear lattice. 

coverage. Let Po, Poo, Pioj .... denote the probabilities of finding 0, 00, iOj,... 
configurations, respectively. These quantities clearly are governed by the 
rate equations ~ 

dPo/dt = - ~ z/,k Pjok 
Lk 

dPoo/dt = - 2 ~ rj, oPjoo 
J 

dP,om/dt = Z ZJ, o(i) Pjoom -- v~,,.P~o,~, + ~ *o,k(m) Piook 
j k 

(1) 

etc., where we have used reflection invariance, and all sums run from 0 
through N. Solution of these equations relies on a shielding property of 
empty pairs of sites. (4) One thus considers the conditional probabilities Qj 
of finding a site in state j, given an adjacent empty pair. These satisfy (14) 
dQo/dt-- -%,oQo [so Q o = e x p ( - % , o  t) for an initially empty lattice] if 
j = 0, and a more complicated set of equations i f j  ~ 0. Knowledge of these 
Qj allows factorization and truncation of the above equations. 

For  our problem where N = 2, dramatic simplification of (1) is possible 
using the symmetry 1 <--* 2, e.g., P~ol = P2o2, Ploo = P2oo, and conservation 
of probability, e.g., P~oo = (Ploo + P2oo)/2 = (Poo - Pooo)/2. Incorporating 
our specific choice of rates, one thus obtains from (1) the closed set of 
equations 

dPo/dt = - 2 [ ~  + (1 - ~) Qo] Poo - 2/~P~o~ 

dPoo/dt = - 2 [ e  + (2 - e) Qo] Poo (2) 

dPloa/dt = -/~Plol + (1 - -  Qo)[C~ + (2 - c~) Qo] Poo/2 

where Qo = e-2'. The coverage in our original problem is related to Po by 
0 = (1 - Po)/2. Thus, the jamming coverage, 0] = O(t = oo ), can be obtained 
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via integration of the above equations from t = 0 to oo. For e = 1, we find 
that O j = ( 1 - e  1)/2 when f l=0 ,  and O j = ( 2 - e  1)/4 when f i>0 .  The 
second result recovers that of Refs. 10 and 11. From the above equations, 
it is also clear that c~ = 2 has special significance. Here we find that Oj = 1/3 
when fl = 0, and 0s-- 5/12 when fl > 0. Further elucidation of these results 
comes from our second approach, where we also describe the asymptotic 
approach of 0j to 1/2 as e ~ oe. 

In the Second approach, we retain the mapping of the original problem 
onto a linear lattice. However now imagine that we cannot distinguish 
between the species 1 and 2 (see Fig. 2). For  simplicity, suppose first that 
fi = 0. Then what we see is adsorption of a single species J( on a linear 
lattice with rates 2, a, and 0 for sites with zero, one, and two occupied NN, 
respectively. Of course, this problem can be solved exactly, (15) and again 
the desired 0 is obtained from ( 1 - P o ) / 2 .  In fact, 0j can be expressed in 
terms of complete and incomplete gamma functions (4) with arguments 
involving ~. 

It is interesting to note that for our original RSA problem with e = 1, 
these rates form an arithmetic progression. This constitutes a very special 
case of sequential adsorption with NN cooperativity on a linear lattice 
where single empty sites, rather than the usual empty pairs, suffice to 
shield(3'16); here Po ( t=  o o ) = e  -1, so O j =  ( 1 - e - 1 ) / 2  as above for f l=0 .  It 
is also clear now why the case ~ = 2  has special significance. This 
corresponds to "almost random filling" (ARF), where sites on a lattice are 
filled randomly, with the exception that completely surrounded sites cannot 
fill(IV); here Po(t = oe )=  1/3, so 0j = 1/3 as above for fi = 0. ARF problems 
are known to be solvable in all dimensions, and they have the special 
property that the spatial correlations are strictly finite range. (17) It is also 
instructive to consider the large-a regime. Using asymptotic expansions for 
the gamma functions mentioned above (see ref. 4), one finds that 
Po ( t=  ~ )  = (27r/c~)1/2/2 + O(c~ 1), so O j =  [1 - (2zc/cQ1/2/2 + O(~-1)] /2  for 
/ /=  0. We comment further on this regime below. 

Next we turn to consideration of the general case where fl > 0. Now, two 
growing strings of contiguous filled sites OXXX...XXXO sometimes merge. 
Whether this happens depends on the "phase" details of the impinging 
strings lost in this second approach, where we are blind to the state (1 or 2) 
of filled sites. Clearly, strings impinging to form 101 and 202 configurations 
will merge, and those forming 102 and 201 will not. However, it is clear 
that these two possibilities occur with equal frequency. Thus, Po(t = oe) 
values for fl > 0 are simply obtained by halving those above for fl = 0. 
Associated 0j  values for e = 1 and 2 recover those reported from the first 
method for f l>0 ,  and we obtain Os=[1-(2rc/e)l/2/4+O(c~ 1)]/2 for 
fl > 0 and large ~. 
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2.2. Other  Solvable Processes 

One naturally asks what class of RSA (or CSA) problems are exactly 
solvable on a square ladder or broader strips. As a natural extension of the 
above example, and motivated by O2/Pd(100 ) chemisorption, (9) we first 
consider RSA of dimers on next-NN sites with NN exclusion on n • 
strips. For a 2 • ~ ladder, the process is equivalent to competitive RSA on 
a linear lattice of either (i) two dimer species where different species cannot 
occupy adjacent sites, or (ii) two monomer species with longer-range exclu- 
sion effects (see Fig. 3). These problems can be solved exactly using the 
techniques of ref. 14. For a 3 x ~ ladder, again exact solution is possible. 
This is most easily seen by mapping onto a process involving competitive 
filling of four distinct monomer species on a linear lattice (Fig. 3). Note 
that here blocking effects depend on whether one species is to the left or the 
right of another! 

Another broad class of solvable processes involve RSA of molecules or 
"animals" of fixed shape, the only constraint being no double occupancy of 
sites. We assert that if the animals span the strip, for all adsorption orienta- 
tions, then exact analysis is possible. To see this, write down the rate equa- 
tions for (the probability of finding) a single empty site, then for the empty 
configurations to which it couples, and so on. In this way one generates an 
infinite set of complicated empty configurations of increasing length. The 
key is to note that implicitly all sites in the "middle" of these configurations 
must be empty. Then (probabilities for) these configurations can be exactly 

A A 
I i 

B B B 
i I J 

0 B B 0 A A 
I I I 1 I I 

2 0 0 1 
I i I I 

l 0 0 I 0 O 2 
I ~ L I I I I 

%,I I I i r--.l L 
T I ?- , iT I 

w 

4 0 1 O 1 0 0 3 0 2 4 0 

Fig.  3. Sequen t i a l  a d s o r p t i o n  o f  d imer s  wi th  N N  exc lus ion  a t  n e x t - N N  sites o n  n • oo 

l adde r s  m a p p e d  o n t o  compe t i t i ve  a d s o r p t i o n  o n  l inear  lattices.  Cases  n = 2 a n d  n = 3 are  

shown.  
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factorized into a finite set using the shielding property of walls of empty 
sites of suitable thickness. (4'19) One example of this type is RSA of "bent 
trimers" on a 2 x oe square ladder, where one finds the exact result, 
0j = 0.81545570. 

3. " A L M O S T "  EXACTLY SOLVABLE PROCESSES 

3.1. Random Dimer  Filling on a 2x  oo Square Ladder 

Here we consider conventional RSA of dimers on a 2 x oo square 
ladder with free boundary conditions on both infinite edges: pairs of sites 
are selected at random and filled only if both are empty. For convenience, 
we set the deposition rate to unity. We believe that, as for regular 2D 
lattices, ~ exact closed-form solution of this random dimer-filling 
problem is not possible. However, this case has special significance since 
"almost exact" solution can be achieved by suitably exploiting the following 
empty-wall shielding property. For RSA of dimers on a square lattice, a 
continuous wall of empty sites of thickness one, which separates the lattice 
into two topologically separated parts, shields sites on one side from the 
influence of those on the other/4"19) (Here "continuous" means nearest- or 
next-nearest-neighbor connectivity.) Thus, for the square ladder, a vertical 
pair of empty sites spanning the ladder constitutes a shielding wall. 

Our approach here is to write down the exact infinite coupled 
hierarchy of rate equations for the probabilities of various configurations of 
empty sites. These include the probabilities Ln, Bn, and Un of linear, bent, 
and U-shaped configurations of n, n + 1, and n + 2 empty sites, respectively 
(see Fig. 4). The procedure is straightforward: one simply accounts for all 
possible ways that an empty configuration can be destroyed by a dimer 
landing completely within or partly overlapping the configuration. Each 
such possibility produces a corresponding loss term in the rate equation for 
that configuration. (19) Clearly a dimer can partly overlap a single empty 
site in two ways when landing aligned with the ladder, and in one way 
when landing across the ladder. Thus one has (d /d t )Ll=-2L2-BI .  
Similarly, for an empty pair aligned with the ladder, a dimer can land com- 
pletely overlapping the pair in one way, partly overlapping the pair in two 
ways when aligned with the ladder, and in two different ways when across 
the ladder. Thus one has (d/dt) L2 = - L 2  - 2L3 - 2B2. Other examples are 
generated similarly. 

It is clear that when writing the rate equations for L,  with n ~> 2, or 
B, and U, with n/> 3, one generates configurations not in the set shown in 
Fig. 4. However, the key simplification for this process is that application 
of the shielding property allows us to factor probabilities of these new 
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n J  1 ... 
L n  o oo o o o o o o o . , ,  

R 0 0 0 0 ,,, 
~n o o o  o o o  o o o o  

O O O  O O O O! , , .  
Un o o o  o o o  o o o o  

Fig. 4. Classification of empty-site configurations whose probabilities satisfy a minimal 
closed set of rate equations for RSA of dimers on a 2 x ~ ladder. 

configurations in terms of the Bn and Un. See Fig. 5 for examples, In this 
way, we obtain an infinite closed subset of equations for L.,  B., and Un. 
These are explicitly 

(d/dt) L1 = - 2 L 2  - B1 

n--1 
(d/dt) L . = - ( n - 1 ) L n - 2 L . + ~ - 2 B . -  ~ B k B n _ k + l / B  ~ for n>~2 

k=2 

(d/dt) B1 = - B1 - 4B2 

(d/dt) B .  = - (n + 2B2/B~) B .  - B~+ 1 - -  U n  - -  U2Bn-1/81 

n 1 
-- ~ U k B n _ k + l / B l  fo r  n > ~ 2  

k=2  

(d/dt) U2= - - 4 ( 1  + 82/81)  U 2 

(d/dt) U n = - ( n q -  l + 4 B 2 / B l )  U ~ - 3 U 2 U  n 1/B1 

n 2 
- ~  U k U . _ k + I / B 1  for n>~3 (3) 

k=2 

-- B2 B 2 / B 1 

Z B 2 U 2 / B 1 

Fig. 5. Application of the empty-site shielding property for RSA of dimers to exactly 
factorize probabilities for various configurations of empty sites. Here these probabilities are 
represented by the configurations themselves. (See the text and Fig. 4 for terminology.) Note 
that these factorizations can be naturally recast in terms of conditional probabilitiesJ 19~ 
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It is not clear how to obtain an exact solution to these equations. 
Nonetheless, one can readily generate a sequence of truncation approx- 
imations of arbitrarily high Mth  order. Here we retain Ln, Bn, and U, 
for n ~< M, and close the above equations using the factorization approx- 
imations 

L M + I ~ L M L M / L M _  I and B M + I ~ B M L M / L M  1 (4) 

These factorizations have simple physical interpretations. The first equates 
the conditional probabilities LM+I/L  M and LM/L M ~ for finding an 
empty site at the end of strings of M and M -  1 empty sites, respectively. 
The second has a similar interpretation. These factorizations, and thus 
our approximation, become exact in the limit M ~  oo. In Table I, we 
present values for 0j obtained by integrating Mth-order  closures of (3) 
for a range of large M. These clearly show convergence to the exact M = oo 
value of Oj = 0.91556671. Estimates of the kinetics from integration of the 
truncated rate equations will be correspondingly precise. These can be 
compared against the known exact asymptotic behavior ~z~ dO/dt,,~ O j - O ,  
SO O j - - O ~ c e  - t  as t ~  oo. Finally, for comparison, we have run 1000 
Monte Carlo simulation trials for random dimer filling on a 2 x 10,000 
lattice (with periodic boundary conditions in the long dimension) to obtain 
0s=0.91556 _+ 0.00013, consistent with our analytic result. 

3.2. Other Examples 

For another example of the "almost solvable" type, we consider RSA 
of square tetramers (i.e., 2 x 2-mers) on n x o0 strips. For 2 x oo and 3 x oo 
strips, the problem trivially maps onto the 1D random dimer-filling 
problem solved long ago by Flory. (21/ For  a 4 x oo strip, exact analysis is 

Table I. Estimates, Using Mth-Order  
Truncation Approximations, for 

the Jamming Coverage 0 j  for RSA 
of Dimers on a Square Ladder 

M Oj 

3 0.91447434 
4 0.91547673 
5 0.91556114 
6 0.91556642 
7 0.91556670 

~8 0.91556671 

822/69/1-2-1l 
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not possible. However, a continuous wall of empty sites of thickness one 
still shields. (~9) (Here, however, continuous means NN connectivity.) For  
this problem, one proceeds as above, developing the rate equations for 
empty configurations. Note that from simple geometric considerations, if in 
any column across the ladder three sites are empty, then the fourth must 
also be empty. This observation, together with the above shielding property, 
allows one to obtain a reduced set of equations for probabilities of just 
a few types of empty configurations, analogous to (3). The Mth-order 
Markov-type approximations are then readily implemented. Another 
example of this type is RSA of 2 x 3-mers, which is exactly solvable on 
2 x oo and 3 x oo strips and "almost solvable" on 4 x oo strips. 

4. G E N E R A L  R E M A R K S  C O N C E R N I N G  P R O B L E M S  ON 
S T R I P S  

The above examples of sequential adsorption processes reflect general 
features of exact solvability on sufficiently narrow strips, possible "almost 
solvability" on slightly broader strips, and lack of solvability on even 
broader strips. RSA of monomers with NN exclusion is solvable on a 
l x o o  (1D) strip with O j = ( 1 - e - 2 ) / 2 , ~ 0 . 4 3 2 3 ,  on a 2 x o o  strip with 
0j = (2 - e -  1 )/4 ~ 0.4080, but is not solvable or even "almost solvable" on 
n x oo strips with n ~> 3 (where 0j--,  0.3642 as n--* 00(4'8'22)). Random dimer 
filling is solvable on a 1 x oo (1D) strip with 0 j =  1 -  e - 2 ~  0.8646, "almost 
solvable" on a 2 x oo strip with 0s~0.9156, but not on n x co strips with 
n ~> 3 (where 0 s --* 0.9068 as n ~ oo~18'19)). 

Some general remarks on "almost solvability" and its disappearance or 
absence for broader strips are appropriate here. "Almost solvability" relies 
on the following feature: application of the shielding condition results in 
simplification of the hierarchical rate equations producing a closed subset 
of equations for probabilities of just a few types of empty configurations. 
This, in turn, allows ready application of arbitrarily high-order truncation 
approximations. This feature is lost for broader strips. Consider RSA of 
dimers on a 3 x oo strip. Here shielding is achieved by a vertical triple of 
empty sites spanning the strip, and this allows some simplification of the 
rate equations. However, one must still consider an infinite number of 
different types of empty configurations which do not span the strip. The 
situation is analogous to the treatment of RSA on 2D or 3D lattices, where 
configurations with all shapes must be considered, and arbitrarily high- 
order truncation approximations cannot be simply implementated. ~4'~9~ 
Note that for RSA of monomers with NN exclusion on a 3 x oo strip, one 
finds the same level of complication as in the 3 x oo random dimer-filling 
problem. This precludes "almost exact" analysis. 
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Finally, we observe that any sequential adsorption process on an 
n x oo strip can be mapped onto a sufficiently complicated 1D process. 
However, such 1D processes generally involve competitive adsorption and 
some complicated form of longer-range cooperativity. Because of the latter 
feature, exact solution is not generally possible, and the mapping is not 
particularly useful. However, for many processes on sufficiently narrow 
strips, this mapping procedure is a natural and efficient way to determine 
exact solvability and to obtain closed-form solutions. 
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